首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   1篇
  2023年   22篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  1998年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
2.
The spontaneous self-assembly of α-synuclein (α-syn) into aggregates of different morphologies is associated with the development of Parkinson's disease. However, the mechanism behind the spontaneous assembly remains elusive. The current study shows a novel effect of phospholipid bilayers on the assembly of the α-syn aggregates. Using time-lapse atomic force microscopy, it was discovered that α-syn assembles into aggregates on bilayer surfaces, even at the nanomolar concentration range. The efficiency of the aggregation process depends on the membrane composition, with the greatest efficiency observed for of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS). Importantly, assembled aggregates can dissociate from the surface, suggesting that on-surface aggregation is a mechanism by which pathological aggregates may be produced. Computational modeling revealed that dimers of α-syn assembled rapidly, through the membrane-bound monomer on POPS bilayer, due to an aggregation-prone orientation of α-syn. Interaction of α-syn with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) leads to a binding mode that does not induce a fast assembly of the dimer. Based on these findings, we propose a model in which the interaction of α-syn with membranes plays a critical role initiating the formation of α-syn aggregates and the overall aggregation process.  相似文献   
3.
为探究恒频-调频蝙蝠下丘神经元恢复周期特点及其对声脉冲跟随率的影响,实验采用模拟的大蹄蝠(Hipposideros armiger)自然状态下的恒频-调频发声信号为声刺激,在5只听力正常的大蹄蝠上记录了下丘神经元的声反应和恢复周期(n = 93).结果发现,根据神经元恢复率达50%时的双声刺激间隔(inter pulse interval,IPI),可将其分为长时恢复型(long recovery,LR;47.4%)、中等时间恢复型(moderate recovery,MR;35.1%)和短时恢复型(short recovery,SR;17.5%).每种类型依据其恢复率随IPI增加而呈现的不同变化又可进一步分为单IPI反应区神经元,多IPI反应区神经元,以及单调IPI反应神经元.LR,MR和SR型神经元恢复率达50%时的平均IPI分别为(64.0 ± 24.8),(19.6 ± 5.8)和(7.1 ± 2.4) ms (P < 0.001),相对应的平均理论每秒声脉冲数分别为(18.2 ± 7.0),(55.4 ± 15.7)和(171.3 ± 102.9) Hz (P < 0.001).结果提示,单IPI和多IPI反应区神经元具有特殊IPI反应特性,能对蝙蝠捕食和巡航期间所处的时相做出准确判断,而单调IPI反应神经元对IPI变化的敏感性较强,但时相判断性较差.另外LR,MR和SR型神经元恢复周期和理论脉冲跟随率的平均结果均能与这种蝙蝠回声定位期间3个时相的发声行为相匹配,且神经元恢复周期参与决定声脉冲跟随率,满足了蝙蝠巡航、捕食的行为学需要.  相似文献   
4.
采用超声监测仪录制超声信号和细胞外电生理记录下丘神经元的频率调谐曲线(frequency tuningcurqes,FTCs)的方法,探讨了大蹄蝠(Hipposideros armiger)回声定位信号与下丘(inferior colliculus,IC)神经元频率调谐之间的相关性.结果发现,大蹄蝠回声定位叫声为恒频-调频(consrant frequency-frequenevmodulated,CF-FM)信号,一般含有2-3个谐波,第二谐波为其主频,cF成分频率(Mean±SD,n=18)依次为:(33.3 4±0.2)、(66.5±0.3)、(99.4 4±0.5)kHz;电生理实验共获得72个神经元的频率调谐曲线,Q10-dB值的范围是0.5-95.4(9.2±14.6,rg=72),最佳频率(best frequency,BF)在回声定位主频附近的神经元具有尖锐的频率调谐特性.结果表明,大蹄蝠回声定位信号与下丘神经元频率调谐存在相关性,表现为最佳频率在回声定位信号主频附近的神经元频率调谐曲线的Q10-dB值较大,具有很强的频率分析能力.  相似文献   
5.
N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain.  相似文献   
6.
Leonardoxa africana T3 is a myrmecophyte, a plant with specialized structures (domatia) that shelter ants. Adult trees are essentially all occupied by the ant Aphomomyrmex afer. One tree possesses one ant colony. Ants tend homopterans inside the domatia. The plant provides ants with nest sites and food via production of extrafloral nectar and via honeydew produced by homopterans. Workers patrol the young leaves, although their nectaries are not yet functional. This study was conducted to investigate the nature of the relationship between the plant and its ants. In order to determine whether ants protect the plant against herbivorous insects, we placed microlepidopteran larvae on young leaves of several trees, and measured the time until discovery of the larvae by the workers. We then studied the responses of workers as a function of insect size. We showed that workers patrolled the young leaves of the majority of trees. There was, however, inter-colony variability in intensity of patrolling. Workers attacked every larva they found, killing and eating the smaller ones, and chasing larger ones off the young leaf. Most of the phytophagous insects attacking young leaves of L. africana T3 were inventoried in this study. We showed that the larvae of microlepidopterans, one of the most important herbivores of this species, form part of the diet of A. afer. The function of the stereotyped behaviour of ant patrolling on young leaves may be in part to obtain insect protein to complement carbohydrate-rich nectar and honeydew, and in part to protect the host and thus increase its production of resources for ants. Our study shows that ants protect the tree against herbivores, and that even if this protection is less pronounced and more variable than that demonstrated for their sister species L. africana sensu stricto and Petalomyrmex phylax, the association between L. africana T3 and A. afer is a mutualism.  相似文献   
7.
For survival, bats of the suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes to extract the direction, distance, velocity, size, and shape of the prey. Although these bats and other mammals share the common layout of the auditory pathway and sound coding mechanism, they have highly developed auditory systems to process biologically relevant pulses at the expense of a reduced visual system. During this active biosonar behavior, they progressively shorten the pulse duration, decrease the amplitude and pulse-echo gap as they search, approach and finally intercept the prey. Presumably, these changes in multiple pulse parameters throughout the entire course of hunting enable them to extract maximal information about localized prey from the returning echoes. To hunt successfully, the auditory system of these bats must be less sensitive to intense emitted pulses but highly sensitive to weak returning echoes. They also need to recognize and differentiate the echoes of their emitted pulses from echoes of pulses emitted by other conspecifics. Past studies have shown the following mechanical and neural adaptive mechanisms underlying the successful bat biosonar behavior: (1) Forward orienting and highly mobile pinnae for effective scanning, signal reception, sound pressure transformation and mobile auditory sensitivity; (2) Avoiding and detecting moving targets more successfully than stationary ones; (3) Coordinated activity of highly developed laryngeal and middle ear muscles during pulse emission and reception; (4) Mechanical and neural attenuation of intense emitted pulses to prepare for better reception of weak returning echoes; (5) Increasing pulse repetition rate to improve multiple-parametric selectivity to echoes; (6) Dynamic variation of duration selectivity and recovery cycle of auditory neurons with hunting phase for better echo analysis; (7) Maximal multiple-parametric selectivity to expected echoes returning within a time window after pulse emission; (8) Pulse-echo delaysensitive neurons in higher auditory centers for echo ranging; (9) Corticofugal modulation to improve on-going multiple-parametric signal processing and reorganize signal representation, and (10) A large area of the superior colliculus, pontine nuclei and cerebellum that is sensitive to sound for sensori-motor integration. All these adaptive mechanisms facilitate the bat to effectively extract prey features for successful hunting.  相似文献   
8.
The transmembrane protein Van gogh‐like 2 (Vangl2) is a component of the noncanonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5‐r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2? (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an “r4‐like” compartment. Using time‐lapse imaging, we show that GFP‐expressing motor neurons in the r2/r3 region of a hoxb1b‐overexpressing wild‐type embryo migrate along the anterior‐posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP‐expressing motor neurons in the r2/r3 region of hoxb1b‐overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1‐r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2‐independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   
9.
10.
This study reports on the structure of the antennal lobe of the pigeon louse, Columbicola columbae. Anterograde staining of antennal receptor neurons revealed an antennal lobe with a few diffuse compartments, an organization distinct from the typical spheroidal glomerular structure found in the olfactory bulb of vertebrates and the antennal lobe of many other insects. This anatomical arrangement of neuronal input is somewhat reminiscent of the aglomerular antennal lobe previously reported in psyllids and aphids. As in psyllids, reports on the odor-mediated behavior of C. columbae suggest that the olfactory sense is important in these animals and indicates that a glomerular organization of the antennal lobe may not be necessary to subtend odor-mediated behaviors in all insects. The diffuse or aglomerular antennal lobe organization found in these two Paraneopteran insect orders might represent an independently evolved reduction due to similar ecological constraints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号